
What Has Quantum Mechanics

to Do With Factoring?

Things I wish they had told me

about Peter Shor’s algorithm

1

Question:

What has quantum mechanics to do with factoring?

Answer:

Nothing!

2

Question:

What has quantum mechanics to do with factoring?

Answer:

Nothing!

But quantum mechanics has a lot to do with waves.

And waves have a lot to do with periodicity.

And being good at diagnosing periodicity

has a lot to do with factoring.

3

Case of cryptographic interest:

Factoring N = pq, where

p and q are enormous (e.g. 300 digit) primes.

Closely tied to the ability to find the period

of ax modulo N for integers a

that share no factors with N .

4

Periodic functions ax in modular arithmetic

a (mod N) = remainder when a divided by N

5 = 5 (mod 7) 52 = 4 (mod 7)

53 = 6 (mod 7) 54 = 2 (mod 7)

55 = 3 (mod 7) 56 = 1 (mod 7)

5x (mod 7) is periodic with period 6

4 = 4 (mod 7)

42 = 2 (mod 7)

43 = 1 (mod 7)

4x (mod 7) is periodic with period 3

6 = 6 (mod 7)

62 = 1 (mod 7)

6x (mod 7) is periodic with period 2

2x (mod 7) has period 3

3x (mod 7) has period 6

5

Periods mod N , where N = pq, and

p and q are enormous primes.

If a shares no factors with N then

as ≡ 1 (mod N) for some integer s,

For there are only N different mod N numbers,

so there must be x and y > x with ay = ax (mod N).

Then ax(as − 1) is a multiple of N , y = x + s.

Since a shares no factors with N , neither does ax,

so as − 1 must be multiple of N :

as = 1 (mod N)

If r is the smallest integer with ar ≡ 1 (mod N)

then ax (mod N) is a periodic function of x with period r.

6

Digression: The reason all periods modulo 7 divide 6:

If p is prime all a < p share no factors with p,

so ar = 1 (mod p) for some (smallest positive) r

⇒ a has an inverse (mod p).

So the p − 1 integers, 1, 2, . . . p − 1

are a group under multiplication (mod p).

The r distinct powers of a are a subroup of that group.

And the number of members of any subgroup

divides the number of members of the whole group.

7

Further digression: Periods modulo N = pq divide (p−1)(q−1)

There are pq − 1 integers less than pq.

Among them are p − 1 multiples of q,

and another q − 1 multiples of p.

So the number of integers a < pq

that share no factors with pq is

(pq−1)− (p−1)− (q−1) = pq−p−q+1 = (p−1)(q−1).

These (p − 1)(q − 1) integers are a group

under multiplication modulo pq.

The r distinct powers of a are a subgroup of that group.

And the number of members r of that subgroup

divides the number of members (p−1)(q−1) of the group.

8

Back to business:

How to factor the product

of two enormous primes, N = pq,

using a good period-finding machine

(e.g. a quantum computer).

Pick a random integer a.

(It is astronomically unlikely to be multiple of p or q.)

Use the period-finding machine to get

the smallest r with ar = 1 (mod N).

Pray for two pieces of good luck.

9

Quantum computer gives smallest r with ar − 1 divisible by N = pq

First piece of luck: r even.

Then (ar/2 − 1)(ar/2 + 1) divisible by N .

but ar/2 − 1 is not divisible by N

(since r is smallest number with ar − 1 divisible by N .)

Second piece of luck: ar/2 + 1 is also not divisible by N .

Then product of ar/2 − 1 and ar/2 + 1 is divisible by both p and q

although neither factor is divisible by both.

Since p, q primes, one factor divisible by p and other divisible by q.

So p is greatest common divisor of N and ar/2 − 1

and q is greatest common divisor of N and ar/2 + 1

FINISHED!

10

Finished, because:

1. Finding the greatest common divisor of two integers can be

done by anybody who can do long division∗ using a simple and

efficient procedure that was know to the ancient Greeks.

2. If a is picked at random, a two-hour argument∗∗ shows that

the probability is at least 50% that both pieces of luck will

hold.

——————–
∗New York Times, November 14, 2006: “When my oldest child,
an A-plus stellar student, was in sixth grade, I realized he had
no idea, no idea at all, how to do long division,” Ms. Backman
said, “so I went to school and talked to the teacher, who said,
‘We don’t teach long division; it stifles their creativity.’ ”

∗∗ N. David Mermin, Introduction to Quantum Computer Sci-

ence, Appendix M, Cambridge University Press, August, 2007.

11

Incorrect (but amazing):

[After the quantum computation] the solutions — the

factors of the number being analyzed — will all be in

superposition.

— George Johnson, A Shortcut Through Time.

[A quantum computer will] try out all the possible

factors simultaneously, in superposition, then collapse

to reveal the answer.

— Ibid.

Correct (but unexciting):

A quantum computer is efficient at factoring because

it is efficient at period-finding.

12

BUT WHAT’S SO HARD ABOUT PERIOD-FINDING?

Given a graph of sin(kx) it’s easy to find the period 2π/k. Since

no value repeats inside a period, ax (mod N) is even simpler.

13

BUT WHAT’S SO HARD ABOUT PERIOD-FINDING?

Given a graph of sin(kx) it’s easy to find the period 2π/k. Since

no value repeats inside a period, ax (mod N) is even simpler.

What makes it hard:

Within a period, unlike the smooth, continuous sin(kx), the

function ax (mod N) looks like random noise.

Nothing in a list of r consecutive values gives a hint that the

next one will be the same as the first.

14

PERIOD FINDING WITH A QUANTUM COMPUTER

Represent n bit number

x = x0 + 2x1 + 4x2 + · · · + 2n−1xn−1

(each xj is 0 or 1)

by product of states |0〉 and |1〉 of n 2-state systems:

|x〉 = |xn−1〉 · · · |x1〉|x0〉

Qbits

15

Qbits, not qubits because:

1. Classical two state systems are Cbits (not clbits)

2. Ear cleaners are Qtips (not Qutips)

3. Dirac wrote about q-numbers (not qunumbers)

(q-bit awkward: 2-Qbit gate OK;

2-q-bit gate unreadable.)

16

More terminology:

Set of states |x〉 = |xn−1〉 · · · |x1〉|x0〉

called the computational basis.

Better term: classical basis.

Remark:

Because it is a basis, linear transformations on Qbits can

be defined by specifying their action on the classical basis.

17

STANDARD QUANTUM COMPUTATIONAL ARCHITECTURE

Represent function f taking n-bit to m-bit integers

by a linear, norm-preserving (unitary) transformation Uf

acting on n-Qbit input register and m-Qbit output register:

input register

↓ ↓

Uf |x〉|0〉 = |x〉|f(x)〉.

↑ ↑

output register

(More generally, Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉.

y ⊕ z = bitwise modulo 2 sum: 1010 ⊕ 0111 = 1101.)

18

QUANTUM PARALLELISM

Uf |x〉|0〉 = |x〉|f(x)〉

Put input register into superposition of all possible inputs:

|φ〉 =
(

1√
2

)n ∑

0≤x<2n

|x〉

= 1√
2

(

|0〉 + |1〉
)

· · · 1√
2

(

|0〉 + |1〉
)

.∗

Applying linear Uf to input and output registers gives

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

————–
∗e.g.

(

|0〉 + |1〉
)(

|0〉 + |1〉
)

= |0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉

19

QUANTUM PARALLELISM

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

Question:

Has one invocation of Uf computed f(x) for all x?

20

QUANTUM PARALLELISM

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

Question:

Has one invocation of Uf computed f(x) for all x?

Answer:

No. Given a single system in an unknown state,

there is no way to learn what that state is.

Information is acquired only through measurement.

Direct measurement of input register gives random x0;

Direct measurement of output register then gives f(x0).

21

QUANTUM PARALLELISM

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

Special form when f(x) = ax (mod N):

∑

0≤x<2n

|x〉|ax〉 =
∑

0≤x<r

(

|x〉 + |x + r〉 + |x + 2r〉 + · · ·
)

|ax〉

22

THE QUANTUM FOURIER TRANSFORM (QFT)

VFT |x〉 =
(

1√
2

)n ∑

0≤y<2n

e2πixy/2n

|y〉

Acting on superpositions, VFT Fourier-transforms amplitudes:

VFT

∑

α(x)|x〉 =
∑

β(x)|x〉

β(x) =
(

1√
2

)n ∑

0≤z<2n

e2πixz/2n

α(z)

If α has period r, as in |x〉 + |x + r〉 + |x + 2r〉 + · · ·,

then β is sharply peaked at integral multiples of 2n/r.

23

HO-HUM!

VFT is boring :

1. Just familiar transformation from

position to momentum representation.

2. Everybody knows Fourier transform

sharply peaked at multiples of inverse period.

But VFT is not ho-humish because:

1. x has nothing to do with position, real or conceptual.

x is arithmetically useful but physically meaningless:

x = x0 + 2x1 + 4x2 + 8x3 + · · · ,

where |xj〉 = |0〉 or |1〉 is state of j-th 2-state system.

2. Sharp means sharp compared with resolution of apparatus.

The period r is hundreds of digits long.

Error in r of 1 in 1010 messes up almost every digit.

24

Using the QFT : VFT |x〉 =
(

1√
2

)n ∑

0≤y<2n

e2πixy/2n

|y〉

VFT

(

1√
2

)n ∑

0≤x<r

(

|x〉 + |x + r〉 + |x + 2r〉 + · · ·
)

|ax〉 =

=
(

1
2

)n ∑

0≤y<2n

(

1 + α + α2 + α3 + · · ·
)

|y〉
∑

0≤x<r

e2πixy/2n

|ax〉,

α = exp
(

2πiy/(2n/r)
)

.

Sum of phases α sharply peaked at values of y

within 1
2 of integral multiples of 2n/r.

Question: How sharply peaked?

Answer: Probability that measurement of input register

gives such a value of y exceeds 40%.

25

Significant (> 40%) chance of getting integer y

as close as possible to (i.e. within 1
2 of) j(2n/r)

for some (more or less) random integer j.

Then y/2n is within 1/2n+1 of j/r.

Question: Does this pin down unique rational number j/r?

Answer: It depends.

Suppose second candidate, j′/r′ with j′/r′ 6= j/r.

∣

∣

∣

j′

r′
−

j

r

∣

∣

∣
=

|j′r − jr′|

rr′
≥

1

rr′
≥

1

N2

So answer is Yes, if 2n > N2.

Input register must be large enough to represent N 2.

Then have 40% chance of learning a divisor r0 of r.

(r0 is r divided by factors it shares with (random) j)

26

A comment:

When N = pq, easy to show∗ period r necessarily < N/2.

So

∣

∣

∣

j′

r′
−

j

r

∣

∣

∣
>

4

N2

and therefore don’t need y as close as possible

to integral multiple of 2n/r.

Second, third, or fourth closest do just as well.

Raises probability of learning divisor of r

from 40% to 90%.

—————
∗ ap−1 = 1 (mod p) ⇒ a(p−1)(q−1)/2 = 1 (mod p),

aq−1 = 1 (mod q) ⇒ a(q−1)(p−1)/2 = 1 (mod q),

⇒ a(p−1)(q−1)/2 = 1 (mod pq).

27

Another comment:

Should the period r be 2m, then 2n/r is itself an integer,

and probability of y being multiple of that integer

is easily shown to be 1, even if input register

contains just a single period.

A pathologically easy case.

Question: When are all periods r powers of 2?

Answer: When p and q are both of form 2j + 1.

(Periods are divisors of (p − 1)(q − 1).)

Therefore factoring 15 = (2 + 1) × (4 + 1)

— i.e. finding periods modulo 15 —

is not a serious demonstration of Shor’s algorithm.

28

SOME NEAT THINGS ABOUT THE QFT

VFT |x〉 =
(

1√
2

)n ∑

0≤y<2n

e2πixy/2n

|y〉

1. Constructed entirely out of 1-Qbit and 2-Qbit gates.

2. Number of gates (and therefore time) grows only as n2.

3. With just one application,

∑

α(x)|x〉 −→
∑

β(x)|x〉,

β(x) =
(

1√
2

)n ∑

0≤z<2n

e2πixz/2n

α(z)

In classical “Fast Fourier Transform” time grows as n2n.

But (as usual) classical FFT gives all the β(x),

While QFT only gives
∑

β(x)|x〉.

Can’t learn any β(x) from one application of QFT.

But can get powerful clues about period of α(x).

29

CIRCUIT FOR QUANTUM FOURIER TRANSFORM

x x

x

x

x2

x1

x0

x5

4

3

VFT

|0〉
|1〉

}

{

1√
2
(|0〉 + |1〉)

1√
2
(|0〉 − |1〉)

eπi ��� ′/2 eπi ��� ′/4 eπi ��� ′/8 eπi ��� ′/16 eπi ��� ′/32

|0〉|0〉, |0〉|1〉, |1〉|0〉 invariant;

|1〉|1〉 −→ eπi/2j

|1〉|1〉

30

ACTION OF QFT ON SUPERPOSITION

∑

α(x)|x〉
∑

β(x)|x〉

β(x) =
∑

y

α(y)e2πixy/26

Replaces amplitudes by their Fourier transforms.

31

INVERSE OF QFT

32

A PROBLEM?

x x

x

x

x2

x1

x0

x5

4

3

VFT

eπi ��� ′/2 eπi ��� ′/4 eπi ��� ′/8 eπi ��� ′/16 eπi ��� ′/32

Number n of Qbits: 2n > N2, N hundreds of digits.

Phase gates eπi
��� ′/2m

impossible to make for most m,

since can’t control strength or time of interactions

to better than parts in 1010 = 230.

But need to learn period r to parts in 10300 or more!

33

Question:

So is it all based on a silly mistake?

Answer:

No, all is well.

Question:

How can that be?

Answer:

Because of the quantum-computational

interplay between analog and digital.

34

Quantum Computation is Digital

Information is acquired only by measuring Qbits.

The reading of each 1-Qbit measurement gate

is only 0 or 1.

The 103 bits of the output y of Shor’s algorithm

are given by the readings (0 or 1) of 103

1-Qbit measurement gates.

There is no imprecision in those 103 readings.

The output is a definite 300-digit number.

But is it the number you wanted to learn?

35

Quantum Computation is Analog

Before a measurement the Qbits

are acted on by unitary gates with

continuously variable parameters.

These variations affect the amplitudes

of the states prior to measurement

and therefore they affect the probabilities

of the readings of the measurement gates.

36

So all is well

“Huge” errors (parts in 104) in the phase gates

may result in comparable errors in the probability that

the 300 digit number given precisely by the measurement gates

is the right 300 digit number.

So the probability of getting a useful number

may not be 90% but only 89.99%.

Since “90%” is actually “about 90%”

this makes no difference.

37

In fact this makes things even better

x x

x

x

x2

x1

x0

x5

4

3

VFT

eπi ��� ′/2 eπi ��� ′/4 eπi ��� ′/8 eπi ��� ′/16 eπi ��� ′/32

Since only the top 20 layers of phase gates can matter,

once you get to N > 220 = 106,

the running time scales not quadratically

but only linearly in the number of Qbits.

38

Quantum Versus Classical Programming Styles

Question:

How do you calculate ax when x is a 300 digit number?

Answer:

Not by multiplying a by itself 10300 times!

How else, then?

Write x as a binary number: x = x999x998 · · ·x2x1x0.

Next square a, square the result, square that result,. . . ,

getting the 1,000 numbers a2j

.

Finally, multiply together all the a2j

for which xj = 1.

999
∏

j=0

(

a2j
)xj

= a

∑

j
xj2

j

= ax

39

Classical: Cbits Cheap; Time Precious

ax =
999
∏

j=0

(

a2j
)xj

Once and for all, make and store a look-up table:

a, a2, a4, a8, . . . , a2999

A thousand entries, each of a thousand bits.

For each x multiply together all the a2j

in the table

for which xj = 1.

40

Quantum: Time Cheap; Qbits Precious

Circuit that executes

ax =
999
∏

j=0

(

a2j
)xj

is not applied 2n times to input register for each |x〉.

It is applied just once to input register in the state

|φ〉 =
(

1√
2

)n ∑

0≤x<2n

|x〉.

So after each conditional (on xj = 1) multiplication by a2j

can store
(

a2j)2
= a2j+1

using same 1000 Qbits

that formerly held a2j

.

41

Another Important Simplification

1-Qbit measurement gates
↘

y5

y4

y3

y2

y1

y0

∑

α(x)|x〉

eπi ��� ′/2 eπi ��� ′/4 eπi ��� ′/8 eπi ��� ′/16 eπi ��� ′/32

42

The Important Simplification

y0

∑

α(x)|x〉

eπiy0
� /2 eπiy0

� /4 eπiy0
� /8 eπiy0

� /16 eπiy0
� /32

2-Qbit operators replaced by 1-Qbit operators,

conditional on measurement outcome.

43

The Important Simplification

y0

∑

α(x)|x〉

eπiy0
� /2 eπiy0

� /4 eπiy0
� /8 eπiy0

� /16 eπiy0
� /32

You don’t need anything but 1-Qbit gates!

44

Things I wish they had told me
about Peter Shor’s algorithm

(and more general morals for the beginner):

1. Shor algorithm finds periods. Period!

Periods −→ factors solely via number-theory.

2. Period-finding is non-trivial for functions that look like

random noise within a period.

3. Quantum parallelism doesn’t calculate all values of a func-

tion using 10300 computers in parallel universes.

4. Shor’s quantum Fourier transform (QFT) doesn’t trans-

form from position to momentum representation.

5. To factor N = pq need enough Qbits to hold N periods of

ax (mod N) except in pathological cases (like N = 15).

45

6. Quantum Fourier transform for n Qbits is built from just

O(n2) gates each of which acts only on single Qbits or on

pairs of Qbits.

7. To use it for period finding you need only O(n) such gates.

8. To use it for period finding you can replace the 2-Qbit

gates by 1-Qbit gates conditional on measurement out-

comes.

9. Quantum computation is a unique blend of digital (mea-

surement gates) and analog (unitary gates).

10. Classical: Cbits cheap, time precious.

Quantum: Time cheap, Qbits precious.

11. Write Qbit, not qubit.

46

Some other things I wish they had told me:

Question:

Why must a quantum computation be reversible

(except for measurements)?

Superficial answer:

Because linear + norm-preserving ⇒ unitary

and unitary transformations have inverses.

Real answer:

Because standard architecture for evaluating f(x),

f(x)
U f

x x

0

oversimplifies the actual architecture:

47

Need additional work registers for doing the calculation:

f(x)

Wx
f

x

0 g(x)

0

Registers

Work

Input

Output

If input register starts in standard state
∑

x |x〉

then final state of all registers is
∑

x |g(x)〉|x〉|f(x)〉.

Work register entangled with input and out registers,

unless final state of work register independent of x.

Quantum parallelism breaks down.

Quantum parallelism maintained

if |g(x)〉 = |0〉, independent of x.

Final state is then |0〉
(

∑

x |x〉|f(x)〉
)

.

48

How to keep the work register unentangled:

f(x)

Wx
f

x

0

0 0

=

Work

Input

Output

g(x) g(x)

0 0

f(x)

f(x)

x x
Vf

0
Vf

C
f(x)

f(x)

0

49

C is built out of 1-Qbit controlled-NOT gates:

C C= =

x x

0 x

controlled-NOT:

50

Question:

How do you do arithmetic on a quantum computer?

Answer:

By copying the (pre-existing) classical theory

of reversible computation.

Question (from reversible-classical-computer scientist):

But that theory requires an irreducibly

3-Cbit doubly-controlled-NOT (Toffoli) gate!

Answer:

In a quantum computer 3-Qbit Toffoli gate

can be built from a few 2-Qbit gates.

51

The 3-Cbit Doubly-Controlled-NOT (Toffoli) gate:

x

y

0

x

y

xy

↑

logical AND

of x and y

52

How to build the 3-Qbit Doubly-Controlled-NOT gate

out of 2-Qbit gates:

y

x

z z

y

x

X
xy BA A B

U
=

X =

(

0 1
1 0

)

= σx U = e−πi ��� ′/2

A = â · σ B = b̂ · σ â × b̂ = x̂ sin θ

A
2 = B

2 = 1

AB = â · b̂ + iâ × b̂ · σ = cos θ + iσx sin θ
(

AB
)2

= cos 2θ + iσx sin 2θ

If angle θ between â and b̂ is π/4 then
(

AB
)2

= iX = eπi/2X

53

Reference:

Quantum Computer Science

N. David Mermin

Cambridge University Press, August 2007

54

